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A calculat ion of the t e m p e r a t u r e  dec r ea se  of an adiabat ic  su r f ace  at a supersonic  turbulent  
boundary  l aye r  is conducted. It is shown that the t e m p e r a t u r e  dec r ea se  is a consequence 
of the appearance  of a vor tex  chain in the flow nea r  the wal ls .  Compar i son  of calculated 
data with exper imenta l  g ives  quali tat ive a g r e e m e n t .  

In s tudies of supersonic  flow over  su r faces  with rec tangula r  openings,  a d e c r e a s e  in r ecove ry  t e m -  
p e r a t u r e  below the t e m p e r a t u r e  of a su r face  with l amina r  boundary l aye r  has been obse rved  [1, 2]. The 
t e m p e r a t u r e  dec r ea s e  noted in the region of cur ren t  juncture contradic ts  es tabl ished concepts ,  according 
to which the turbulizing role  of the depress ion  should obviously lead to a t e m p e r a t u r e  i n c r e a s e .  

Measu remen t  of su r face  t e m p e r a t u r e s  ove r  the openings gave the r e su l t s  shown in Fig .  1. M e a s u r e -  
ments  were  conducted in a cu r ren t  with Mach number  M = 1.69 in a f lat  channel,  with Reynolds number  Re 
= 4.4 �9 105 at the point of discontinuity.  The resu l t s  a r e  p resen ted  in the f o r m  of the functional dependence 
of the ra t io  of the r e c o v e r y  coefficient  r to the corresponding r e c o v e r y  coefficient r 0 on a smooth  plate on 
length L, measu red  in units of h0. The  measu r ing  e lement ,  consist ing of a copper  inser t ,  3 m m  in d iamete r ,  
with thermoeouple ,  was located at point a .  As is evident,  with inc rease  in L the wall  t e m p e r a t u r e  beyond 
the opening f i r s t  d e c r e a s e s ,  and then r i s e s  smoothly ,  having a c l ea r ly  defined min imum in the in terva l  L / h  0 

2-4.  

In [3], in an examinat ion of high veloci ty  a i r  flow around cy l inders ,  the suggest ion was made that the 
t e m p e r a t u r e  dec r ea s e  is produced by a well  defined unstable flow, a r i s ing  through a r egu la r  b reakaway  and 
depar tu re  downward in the flow of l a rge  sca le  v o r t i c e s .  Following the proposi t ion  of that work,  we will a t -  
t empt  to conduct an ana lys i s  of the cooling obse rved  with a vor tex  boundary l aye r ,  considering the instabi l i ty 
p r e s e n t  in this case .  

We will a s s u m e  that the vor.tex boundary l aye r  (Fig.2) consis ts  of a thin d iss ipat ive  flow region 2 and 
an ex te rna l  i soent ropic  region,  the flow within which, excluding the vor tex  cen te r s  1, may be r ega rded  as 
potent ia l .  The veloci ty  of the incident flow is equal to V~o, and the vor tex  center  t rans la t ion  veloci ty  is V v. 
The vor tex  spacing and dis tance f r o m  the vor tex  center  to the boundary with the viscous  sublayer  will be 
designated by l v and h, r e s pec t i ve l y .  We will then find the t e m p e r a t u r e  of su r face  3, and compare  the s ame  
with the t e m p e r a t u r e  of an adiabat ic  su r face  with s table  flow. 

We will introduce the values  of ve loci ty  v and the rmodynamic  t e m p e r a t u r e  T at the externa l  boundary 
of the d iss ipa t ive  flow region.  Then the r e c o v e r y  t e m p e r a t u r e  of the sur face  flowed over  will be de te rmined  
by 

U 2 
T w --= T + r  - - ,  (1) 

2Cp 

where  Cp is the heat capaci ty  of the gas  at constant p r e s s u r e .  

The conditions at the externa l  boundary of the d iss ipat ive  flow region a re  found f r o m  the LaGraage  
equation for  p lanar  unstable  potent ial  flow, which has the f o r m  
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Fig.  1. Measurement  of r ecove ry  coefficient in the region of vor tex boundary 
layer  depending on L for  M = 1.69. 

F ig .2 .  Scheme of flow: 1) centers  of vor t ices ;  2) viscous sublayer;  3) wall.  

Or t- ~- q- cvT= -b %T| = const, (2) 

where  q~ is the veloci ty potential ,  and Too is the t empera tu re  of the undisturbed flow. The constant he re  is 
the enthalpy of f r ic t ion.  Equation (2} is obtained f rom the integral  of the LaGrange equation for  motion by 
means of the isoentropic dependences between the gas p a r a m e t e r s ,  and an examination of the region far  
above the flow, where the veloci ty is constant.  The local velocity v can be depicted as the difference be-  
tween the undisturbed flow velocity,  and the veloci ty  u, introduced in this case by the vor tex sys tem,  i .e. ,  

v = V. - -  u. (3) 

After  s imple computations,  assuming the vor tex intensity to b e  small ,  and consequently,  u much smal le r  
than V~, we obtain the formula  for  wall t empera tu re  

V~ 10q~ (1 - -  r) (4) 
T w = T~. + r 2% cp Or ~ V.~u. 

Inasmuch as in a vor tex boundary layer  the vortex passage f requency is of the o rde r  of 104 Hz, it is suf-  
f ic ient ly  valid to assume that the sensor  employed r eg i s t e r ed  only an average  t empera tu re ,  equal to 

V~ 1 Co~_Or + (1--r) v| ;u&.  (5) 
Tw = 1~ Twdr = T| q- r 2% cpr ~ o~ c~'r 

0 0 

For  a fixed point ~o will be a function of T only, hence 

T 

1 ('Oq, dr ~ - - ~ o  
= �9 

We will introduce an express ion  for  the average  induced veloci ty 
,$ 

0 

Then the depar ture  in wall t empera tu re  for  the case examined f ro m  wall t empera tu re  with stable flow will 
be  de termined by 

AT ( T| ~-rV~ ~-- T~ = 1 % - - %  1--rv|  (6) 
2%! cp �9 cp 

The  dif ference in potentials is found by examination of the t rans la t ion of a re la t ively  s ta t ionary point on the 
wall n of a pai r  of vor t ices ,  consisting of a rea l  and m i r r o r  vor tex,  with intensity ~t equal in magnitude, but 
opposite in sign. For  a sufficiently long t ime per iod we have 

%--% =2~n~ ,  (7) 

where  n is the vor tex passage f requency.  
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Fig.  3. T e m p e r a t u r e  d e c r e a s e  for  an adiabatic  su r face  for  l* = 28, 
r = 0.85: 1) V~, = 560 m / s e c ;  2) 540; 3) 520; 4) 500; 5) 480; 6) 
460; 7) 440. 

F i g . 4 .  R ecove ry  coefficient for  flow over  a backward- fac ing  
s tep .  

In o rde r  to de te rmine  the induced veloci ty,  we shall  use  Eq. (3), which could also be in te rpre ted  f r o m  
the viewpoint of cur ren t  superpos i t ion .  Assuming  the value of u to be much lower than V,r one can go 
fu r the r  and a s s u m e  it to be much lower  than the veloci ty  of sound. This  then p e r m i t s  the use of the theory  
of the functions of a complex va r i ab le  in calculating u. 

Calculat ions by wel l -known fo rmulae  for  instantaneous veloci ty values  induced on the  center  line of 
the vor tex  path,  with s y m m e t r i c  dis t r ibut ion of vo r t i ce s ,  indicate s t rong osci l la t ions  over  t ime  in the 
values  of these  ve loc i t ies ,  so  that obtaining an ave rage  induced veloci ty  is coupled with cer ta in  diff icult ies .  
Fo r  s impl i f ica t ion ,  if we take as  the ave r age  veloci ty  the veloci ty  induced by a vor tex  l ayer  with intensi ty 
of evenly dis t r ibuted vor t i ces  (linear circulat ion) nc  = ~t//v, we will have 

u =  2~n/ l  v. (8) 

Fu r the r ,  introducing the re la t ive  vor tex  t rans la t ion  veloci ty  b = Vv/V~,  and determining thereby the vor tex  
p a s s a g e  f requency  n = bV / /v ,  subst i tut ion in Eq. (6) will produce 

AT= V_~u (b + r - -  1). (9) 
Cp 

As a p r e l i m i n a r y  hypothes is ,  we will a s s u m e  the region of d iss ipa t ive  flow to be a l amina r  boundary l aye r ,  
beginning at the point of flow union. Then the value of the r e c o v e r y  coefficient r ~ 0.85. Expe r imen t s  show 
that the re la t ive  vor tex  t r ans la t ion  veloci ty  is unstable ,  but on the . ave rage  i ts  value may  be r ega rded  as 
equal to b ~. 0.85. Thus ,  AT de te rmines  a t e m p e r a t u r e  dec r ea se  (cooling) of the su r face  when a v o r t e x  
chain appea r s  above it. 

F r o m  Eq. (9) it is evident that in de terminat ion  of cooling, a knowledge of u is insufficient ,  this quan-  
t i ty a l so  being de te rmined  by the unknown vor tex  intensi ty  •  

In o rde r  to find u, we will examine the question of the vor tex  t rans la t ion  veloci ty  re la t ive  to the s u r -  
rounding medium.  Returning to the vor tex  path with s y m m e t r i c a l  vor tex  dis t r ibut ion,  it may be noted that,  
inasmuch as no one vor tex  chain induces a veloci ty  upon i tself ,  the chain t r ans l a t e s  only under the in-  
f luence of a vor tex  of another  row.  Under such conditions the vec to r  chain veloci ty  is found by the well  
known fo rmula  obtained through the theory  of the functions of a complex var iab le ,  

~ ( 2~h I 

= J 

We note that an analogous s y s t e m  of flow was examined in [4]. However ,  the calcula t ion conducted 
the re in ,  with the assumpt ion  V v = V~r cannot be cons idered  valid,  s ince an assumpt ion  of that na ture  is 

0 analogous to taking V v = 0, which depr ives  the p rob l em of its content, i n a smuch  as a nonzero  value for  
the re la t ive  vor tex  veloci ty in Eq. (10) is a n e c e s s a r y  condition for  the exis tence  of vo r t i ce s .  

Employing Eq.  (10), a f t e r  a s e r i e s  of s imple  computat ions ,  we obtain the express ion  for  the induced 
veloci ty  
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u =  2(1 --b)V, th \-[~1. 

We may  now ver i fy  the degree  of validi ty of the assumpt ion  that u is smal l  in compar i son  with V.~. For  an 
approx imate  evaluation,  we will take some median exper imenta l  data: b = 0.85 and lv/h = 28. Then u/V,o 

0.07, which suppor ts  the assumpt ion  made.  

Introducing the s impl i f ied  notation ( I - b )  = m and lv/h =/*, we obtain the final express ion  for  t e m -  
p e r a t u r e  dec r ea s e  

AT= 2V~ [m(r_ m)] th (2a ) (12) c7 ) 7  

Calculat ions for  exper iments  conducted a r e  p resen ted  in Fig.  3, where  the AT values a r e  given in *C. 
F r o m  the distr ibution of the curves  calculated for  different incident flow veloci t ies ,  it is evident that with 
i nc rea se  in V~r the degree  of "cooling" of the plate sur face  i n c r e a s e s ,  other conditions being equal, with 
an inc rease  in intensi ty of the vo r t i ces  compr i s ing  the vor tex  path.  

The approx imate  cb_~racter of Eq. (12) should be noted. This  approx imateness  is due not only to a s -  
suming isoentropic  flow in the external  regions  of the nea r -wa l l  l aye r ,  but also to taking the quantity l* as 
constant ,  s ince it in fact  i n c r e a s e s  with movement  down the flow. The assumpt ion  of an infinite vor tex  
chain is a lso  an ideal izat ion.  (One might also note the sufficiently close analogy to K a r m a n ' s  calculat ion 
scheme  for  the vor tex  path,  in which the ra t io  between vor tex  spacing and vor tex  width is taken as constant 
for  ease  in calculat ion,  when in fact  p ic tu res  of such paths in [5] show that this is not the case.)  Moreover ,  
the a t ta inment  of accura te  values of t e m p e r a t u r e  dec rea se  f r o m  Eq. (12) is also imposs ib le  due to the l a c k  
of accu ra t e  values  for  m and l*. It is most  difficult to de te rmine  l* due to the grea t  difficulty of d e t e r m i n -  
ing h, where in  it is n e c e s s a r y  to consider  the thickness of the viscous  sub layer .  To all that has been said,  
it might be added that the calculat ion does not consider  viscous deformat ion  of the vo r t i ce s ,  and uses  an 
approx imate  mean value for  the induced veloci ty .  

The scheme  of flow examined indicates a n e c e s s a r y  r i s e  in r e c o v e r y  t e m p e r a t u r e  as dis tance f r o m  
the back  edge of the depress ion  i n c r e a s e s ,  as a consequence of a dec rea se  in veloci ty  of re la t ive  vor tex  
motion with a dec r ea s e  in vor tex  intensity,  these effects  being produced by v i scos i ty .  Despite  the approx i -  
ma te  na ture  of the calculation,  the r e su l t s  obtained in Fig.  3 give values which coincide to within one order  
with exper imenta l  r e su l t s .  Thus,  the t e m p e r a t u r e  dec rea se  beyond the depress ion  in the exper iments  de-  
sc r ibed  for  L ~ 3h (see Fig.  1) was AT ~ 4-5*C. 

The r i s e  of a vor tex  boundary l ayer  (although there  a r e  no direct  indications for  this} may  also  ex-  
plain the t e m p e r a t u r e  dec rea se  of a nonconductive sur face  beyond a theore t ica l  p la te ,  f r o m  which flows a 
supersonic  cur ren t ,  as  is evident f r o m  the example  of flow of the second type, p resen ted  in [1], and shown 
exper imenta l ly  in F ig .4 ,  obtained for  M = 1.7. 

In conclusion,  it can be said that the proposa l  of a vor tex  boundary l ayer  consist ing of a viscous  sub-  
l aye r  with unstable motion on the ex te r io r  boundary and a nonviscous region with potential  flow, excluding 
the concentrated vor t i ces ,  is evidently just i f iable .  In any case  it does give a qual i tat ively sa t i s f ac to ry  ex-  
planation of the t e m p e r a t u r e  dec r ea s e  mechan i sm.  

V ~ 
V v 
v 

u 

T 

Tw, T~ 
L 
ho 
h 
b 

lv 
r 

r o  

NOTATION 

is the incident flow velocity;  
is the vor tex  velocity;  
is the local  velocity;  
is the induced velocity;  
is the thermodynamic  t empe ra tu r e ;  
a r e  the r e c o v e r y  t e m p e r a t u r e  and undisturbed flow t e m p e r a t u r e ,  respec t ive ly ;  
is the length of depress ion;  
is the depth of depress ion;  
is the dis tance f r o m  vor tex  center  to wall; 
is the re la t ive  vor tex  velocity;  
is the vor tex  spacing; 
is the r e c o v e r y  coefficient;  
is the r ecove ry  coefficient  on smooth sur face ;  
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Cp 
n 

Re 

M 
q~ 
T 
~t 

is the gas heat capacity at constant pressure;  
is the vortex passage frequency; 
is the Reynolds number; 
is the Mach number; 
is the velocity potential; 
is the time; 
is the vortex intensity. 
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