THE TEMPERATURE OF AN ADIABATIC SURFACE
AT A TURBULENT BOUNDARY LAYER

M, G, Morozov UDC 533.601.16

A calculation of the temperature decrease of an adiabatic surface at a supersonic turbulent
boundary layer is conducted, It is shown that the temperature decrease is a consequence
of the appearance of a vortex chain in the flow near the walls, Comparison of calculated
data with experimental gives qualitative agreement,

In studies of supersouic flow over surfaces with rectangular openings, a decrease in recovery tem-
perature below the temperature of a surface with laminar boundary layer has been observed [1, 2], The
temperature decrease noted in the region of current juncture contradicts established concepts, according
to which the turbulizing role of the depression should obviously lead to a temperature increase,

Measurement of surface temperatures over the openings gave the results shown in Fig,1, Measure-
ments were conducted in a current with Mach number M = 1,69 in a flat channel, with Reynolds number Re
=4,4+10° at the point of discontinuity. The results are presented in the form of ‘the functional dependence
of the ratio of the recovery coefficient r to the corresponding recovery coeificient ry on a smooth plate on
length L, measured in units of hy,, The measuring element, consisting of a copper insert,3 mm in diameter,
with thermocouple, was located at point a, As is evident, with increase in L the walltemperature beyond
the opening first decreases, and then rises smoothly, having a clearly defined minimum in the interval L/h,
~2-4,

In {3], in an examination of high velocity air flow around cylinders, the suggestion was made that the
temperature decrease is produced by a well defined unstable flow, arising through a regular breakaway and
departure downward in the flow of large scale vortices, Following the propositionof that work, we will at-
tempt to conduct an analysis of the cooling observed with a vortex boundary layer, considering the instability
present in this case,

We will assume that the vortex boundary layer (Fig.2) consists of a thin dissipative flow region 2 and
anexternal isoentropic region, the flow within which, excluding the vortex cenfers 1, may be regarded as
potential, The velocity of the incident flow is equal to V., and the vortex center translation velocity is V.
The vortex spacing and distance from the vortex center to the boundary with the viscous sublayer will be
designated by 7, and h, respectively, We will then find the temperature of surface 3, and compare the same
with the temperature of an adiabatic surface with stable flow.

We will introduce the values of velocity v and thermodyhamic temperature T at the external boundary
of the dissipative flow region, Then the recovery temperature of the surface flowed over will be determined
by

v? .
Ty=T+r —, (1)
2¢,

where Cp is the heat capacity of the gas at constant pressure.

The conditions at the external boundary of the dissipative flow region are found from the LaGrange
equation for planar unstable potential flow, which has the form
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Fig.1. Measurement of recovery coefficient in the region of vortex boundary
layer depending on L for M = 1,69,

Fig.2, Scheme of flow: 1) centers of vortices; 2) viscous sublayer; 3) wall,

2 2
g—f‘ -+ 32- +cpT= K; + ¢, T = const, (2)
where ¢ is the velocity potential, and T, is the temperature of the undisturbed flow, The constant here is
the enthalpy of friction, Equation (2) is obtained from the integral of the LaGrange equation for motion by
means of the isoentropic dependences between the gas parameters, and an examination of the region far
above the flow, where the velocity is constant, The local velocity v can be depicted as the difference be-
tween the undisturbed flow velocity, and the velocity u, introduced in this case by the vortex system, i.e.,

U=Vas—1u. (3)

After simple computations, assuming the vortex ihtensity to be small, and consequently, u much smaller
than V_, we obtain the formula for wall temperature
2 1 1—r
PR TR /- S U Ul R (4

Inasmuch as in a vortex boundary layer the vortex passage frequency is of the order of 10* Hz, it is suf-
ficiently valid to assume that the sensor employed registered only an average temperature, equal to

Tw=i5.TdT_Tm—l—r——- Sa“’a T+ 0V,,§ud1: (5)
T
0
For a fixed point ¢ will be a function of T only, hence
T
. a_(B_ dT — ?1? - (PO .
Jv T

We will introduce an expression for the average induced velocity

2 e
T
0
Then the departure in wall temperature for the case examined from wall temperature with stable flow will
be determined by

. 2 _— —_ :
AT:(T +r"_),7~w=_‘_u__‘ V. (6)

P

The difference in potentials is found by examination of the translation of a relatively stationary point on the
wall n of a pair of vortices, consisting of a real and mirror vortex, with intensity » equal in magnitude, but
opposite in sign. For a sufficiently long time period we have

q.)l_:_?o—:; 231;"”, (7)
T

where n is the vortex passage frequency.
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Fig.3, Temperature decrease for anadiabatic surfacefor I* = 28,
T =0,85:1) Vo, =560 m/sec; 2) 540; 3) 520; 4) 500; 5) 480; 6)
460; 7) 440,

Fig.4. Recovery coefficient for flow over a backward-facing
step.

In order to determine the induced velocity, we shall use Eq, (3), which could also be interpreted from
the viewpoint of current superposition, Assuming the value of u to be much lower than V_, one can go
further and assume it to be much lower than the velocity of sound, This then permits the use of the theory
of the functions of a complex variable in calculating u.

Calculations by well-known formulae for instantaneous velocity values induced on the center line of
the vortex path, with symmetric distribution of vortices, indicate strong oscillations over time in the
values of these velocities, so that obtaining an average induced velocity is coupled with certain difficulties,
For simplification, if we take as the average velocity the velocity induced by a vortex layer with intensity
of evenly distributed vortices (linear circulation) e = k/lv, we will have

U = 2nx/l,. (8)

Further, introducing the relative vortex translation velocity b = Vv/ Ve, and determining thereby the vortex
passage frequency n = me/lv, substitution in Eq, (6) will produce
AT="=* @1 r—1). (9)
‘p
As a preliminary hypothesis, we will assume the region of dissipative flow to be a laminar boundary layer,
beginning at the point of flow union, Then the value of the recovery coefficient r = 0,85, Experiments show
that the relative vortex translation velocity is unstable, but on the average its value may be regarded as

equal tob ~ 0,85, Thus, AT determines a temperature decrease '(cooling) of the surface when a vortex
chain appears above it,

From Eq. (9) it is evident that in determination of cooling, a knowledge of u is insufficient, this quan-
tity also being determined by the unknown vortex intensity %,

In order to find u, we will examine the question of the vortex translation velocity relative to the sur-
rounding medium, Returning to the vortex path with symmetrical vortex distribution, it may be noted that,
inasmuch as no one vortex chain induces a velocity upon itself, the chain translates only under the in-
fluence of a vortex of another row, Under such conditions the vector chain velocity is found by the well
known formula obtained through the theory of the functions of a complex variable,

113 2nh

v
We note that an analogous system of flow was examined in [4]. However, the calculation conducted
therein, with the assumption V, = V_, cannot be considered valid, since an assumption of that nature ig

analogous to taking Vg, = 0, which deprives the problem of its content, inasmuch as a nonzero value for
the relative vortex velocity in Eq, (10) is a necessary condition for the existence of vortices.

Employing Eq. (10), after a series of simple computations, we obtain the expression for the induced
velocity
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u=2(1—0)Vath - (11
B

We may now verify the degree of validity of the assumption that u is small in comparison with V., For an

approximate evaluation, we will take some median experimental data: b = 0.85 and Iy/h = 28, Then u/V,,

~ 0,07, which supports the assumption made,

Introducing the simplified notation (1-b) = m and lv/h = 1*, we obtain the final expression for tem-
perature decrease
2V 2n
=== —_ = (12)
AT & fm(r m)]th(l* ) .
Calculations for experiments conducted are presented in Fig, 3, where the AT values are given in °C,
From the distribution of the curves calculated for different incident flow velocities, it is evident that with

increase in V, the degree of "cooling™ of the plate surface increases, other conditions being equal, with
an increase in intensity of the vortices comprising the vortex path.

The approximate character of Eq. (12) should be noted. This approximateness is due not only to as-
suming isoentropic flow in the external regions of the near-wall layer, but also to taking the quantity I* as
constant, since it in fact increases with movement down the flow, The assumption of an infinite vortex
chain is also an idealization. (One might also note the sufficiently close analogy to Karman's calculation
scheme for the vortex path, in which the ratio between vortex spacing and vortex width is taken as constant
for ease in calculation, when in fact pictures of such paths in {5] show that this is not the case,) Moreover,
the attainment of accurate values of temperature decrease from Eq, (12) is also impossible due to the lack
of accurate values for m and /*, It is most difficult to determine I* due to the great difficulty of determin-
ing h, wherein it is necessary to consider the thickness of the viscous sublayer. To all that has been said,
it might be added that the calculation does not consider viscous deformation of the vortices, and uses an
approximate mean value for the induced velocity.

The scheme of flow examined indicates a necessary rise in recovery temperature as distance from
the back edge of the depression increases, as a consequence of a decrease in velocity of relative vortex
motion with a decrease in vortex intensity, these effects being produced by viscosity. Degpite the approxi-
mate nature of the calculation, the results obtained in Fig, 3 give values which coincide to within one order
with experimental results, Thus, the temperature decrease beyond the depression in the experiments de-
scribed for L # 3h (see Fig,1) was AT = 4-5°C,

The rise of a vortex boundary layer (although there are no direct indications for this) may also ex-
plain the {emperature decrease of a nonconductive surface beyond a theoretical plate, from which flows a
supersonic current, as is evident from the example of flow of the second type, presented in [1], and shown
experimentally in Fig,4, obtained for M = 1,7,

In conclusion, it can be said that the proposal of a vortex boundary layer consisting of a viscous sub-
layer with unstable motion on the exterior boundary and a nonviscous region with potential flow, excluding
the concentrated vortices, is evidently justifiable. In any case it does give a qualitatively satisfactory ex-
planation of the temperature decrease mechanism,

NOTATION

is the incident flow velocity;

is the vortex velocity;

is the local velocity;

is the induced velocity;

is the thermodynamic temperature;

are the recovery temperature and undisturbed flow temperature, respectively;
is the length of depression;

is the depth of depression;

is the distance from vortex center to wall;

is the relative vortex velocity;

is the vortex spacing;

is the recovery coefficient;

is the recovery coefficient on smooth surface;

8

<

HHHEeE 4 <
g

.

8

sEReE

=R
)



[}
]

X1es e

[ B NI UL I U

is the gas heat capacity at constant pressure;
is the vortex passage frequency;

is the Reynolds number;

is the Mach number;

is the velocity potential;

is the time;

is the vortex intensity,
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